Anomalous diffusion on a selfsimilar hierarchical structure

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selfsimilar Fractals and Selfsimilar Random Fractals

We survey the application of contraction mapping argments to selfsimilar (nonrandom) fractal sets, measures and functions. We review the results for selfsimilar random fractal sets and measures and show how the method and extensions also work for selfsimilar random fractal functions.

متن کامل

Structure of $Z^2$ modulo selfsimilar sublattices

In this paper we show the combinatorial structure of Z modulo sublattices selfsimilar to Z. The tool we use for dealing with this purpose is the notion of association scheme. We classify when the scheme defined by the lattice is imprimitive and characterize its decomposition in terms of the decomposition of the gaussian integer defining the lattice. This arise in the classification of different...

متن کامل

Anomalous Diffusion: a Dynamic Perspective

This paper investigates whether spontaneous, stationary velocity fluctuations can lead to deviations from the regular Fickian diffusion. A kinematic analysis reveals that anomalous diffusion, both fast and slow, arises from long-tailed velocity auto-correlation functions (VACF). This infinite span of interdependence of the random velocity leads to the breakdown of the central limit theorem for ...

متن کامل

Anomalous diffusion on the Hanoi networks

Diffusion is modeled on the recently proposed Hanoi networks by studying the mean-square displacement of random walks with time, 〈r2〉 ∼ tw . It is found that diffusion —the quintessential mode of transport throughout Nature— proceeds faster than ordinary, in one case with an exact, anomalous exponent dw = 2− log2(φ) = 1.30576 . . . . It is an instance of a physical exponent containing the “gold...

متن کامل

Transient Anomalous Sub-diffusion on Bounded Domains.

This paper develops strong solutions and stochastic solutions for the tempered fractional diffusion equation on bounded domains. First the eigenvalue problem for tempered fractional derivatives is solved. Then a separation of variables and eigenfunction expansions in time and space are used to write strong solutions. Finally, stochastic solutions are written in terms of an inverse subordinator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal de Physique Lettres

سال: 1985

ISSN: 0302-072X

DOI: 10.1051/jphyslet:019850046013057500